Bacterial Associates Modify Growth Dynamics of the Dinoflagellate Gymnodinium catenatum

نویسندگان

  • Christopher J. S. Bolch
  • Thaila A. Bejoy
  • David H. Green
چکیده

Marine phytoplankton cells grow in close association with a complex microbial associate community known to affect the growth, behavior, and physiology of the algal host. The relative scale and importance these effects compared to other major factors governing algal cell growth remain unclear. Using algal-bacteria co-culture models based on the toxic dinoflagellate Gymnodinium catenatum, we tested the hypothesis that associate bacteria exert an independent effect on host algal cell growth. Batch co-cultures of G. catenatum were grown under identical environmental conditions with simplified bacterial communities composed of one-, two-, or three-bacterial associates. Modification of the associate community membership and complexity induced up to four-fold changes in dinoflagellate growth rate, equivalent to the effect of a 5°C change in temperature or an almost six-fold change in light intensity (20-115 moles photons PAR m-2 s-1). Almost three-fold changes in both stationary phase cell concentration and death rate were also observed. Co-culture with Roseobacter sp. DG874 reduced dinoflagellate exponential growth rate and led to a more rapid death rate compared with mixed associate community controls or co-culture with either Marinobacter sp. DG879, Alcanivorax sp. DG881. In contrast, associate bacteria concentration was positively correlated with dinoflagellate cell concentration during the exponential growth phase, indicating growth was limited by supply of dinoflagellate-derived carbon. Bacterial growth increased rapidly at the onset of declining and stationary phases due to either increasing availability of algal-derived carbon induced by nutrient stress and autolysis, or at mid-log phase in Roseobacter co-cultures potentially due to the onset of bacterial-mediated cell lysis. Co-cultures with the three bacterial associates resulted in dinoflagellate and bacterial growth dynamics very similar to more complex mixed bacterial community controls, suggesting that three-way co-cultures are sufficient to model interaction and growth dynamics of more complex communities. This study demonstrates that algal associate bacteria independently modify the growth of the host cell under non-limiting growth conditions and supports the concept that algal-bacterial interactions are an important structuring mechanism in phytoplankton communities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bacterial Community Affects Toxin Production by Gymnodinium catenatum

The paralytic shellfish toxin (PST)-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communitie...

متن کامل

Bacterial diversity of Gymnodinium catenatum and its relationship to dinoflagellate toxicity

Gymnodinium catenatum Graham (Dinophyceae) is one of several marine dinoflagellates responsible for outbreaks of paralytic shellfish poisoning (PSP), a problem that is considered to be increasing globally. Bacteria associated with these dinoflagellates have been implicated as potentially involved with the production of PSP toxins, and this study sought to identify whether there was a link betwe...

متن کامل

The toxic dinoflagellate Gymnodinium catenatum: an invader in the Mediterranean Sea

The distribution of the toxic dinoflagellate Gymnodinium catenatum Graham in the Mediterranean Sea was once restricted to the eutrophic waters of the Alborán Sea. In September 1999, this taxon was found for first time in the Algerian basin, being the dominant species at subsurface depths (~1 cell mL–1) associated with low salinity waters. The geographical expansion of this exotic species is not...

متن کامل

Effects of the toxic dinoflagellate, Gymnodinium catenatum on hydrolytic and antioxidant enzymes, in tissues of the giant lions-paw scallop Nodipecten subnodosus.

This study documents effects of the toxic dinoflagellate Gymnodinium catenatum, a producer of paralytic shellfish poison, on juvenile farmed (5.9+/-0.39 cm) giant lions-paw scallop Nodipecten subnodosus. Scallops were fed bloom concentrations of toxic dinoflagellate G. catenatum for 7 h. The effect of the toxic dinoflagellate in different tissues was determined by analysis of antioxidant enzyme...

متن کامل

Grazing of heterotrophic dinoflagellate Noctiluca scintillans (Mcartney) Kofoid on Gymnodinium catenatum Graham.

A dinoflagellate bloom ("red tide" event) dominated by the toxic Gymnodinium catenatum Graham (Gymnodiniales, Dinophyceae; 99.7%) and the noxious Noctiluca scintillans (Mcartney) Kofoid (Noctilucaceae, Dinophyceae; 0.3%) was observed in Bahia de Mazatlán Bay, México, on 24-26 January 2000. Photographic and microscopic analysis of samples during such an event, allowed us to collect evidence of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017